This guide walks you through creating a complete MCP server with interactive widget support, enabling rich user experiences across both MCP Apps clients (Claude, Goose, etc.) and ChatGPT.
Dual-Protocol Advantage: With mcp-use, you write your widgets once using type: "mcpApps" and they automatically work with both:
- MCP Apps - Standard MCP protocol (Claude, Goose, MCP clients)
- ChatGPT - OpenAI Apps SDK protocol
This guide focuses on the recommended dual-protocol approach.
What You’ll Build
By the end of this guide, you’ll have:
- A fully functional MCP server with dual-protocol widget support
- Automatic widget registration from React components
- Widgets that work in both ChatGPT and MCP Apps clients
- Tools that return interactive widgets
- Production-ready configuration
Prerequisites
- Node.js 18+ installed
- Basic knowledge of TypeScript and React
- Familiarity with MCP concepts (see MCP 101)
Step 1: Create Your Project
The easiest way to start is using the Apps SDK template (which supports both protocols):
npx create-mcp-use-app my-widget-server --template mcp-apps
cd my-widget-server
This creates a project structure:
my-widget-server/
├── resources/ # React widgets go here
│ └── display-weather.tsx # Example dual-protocol widget
├── index.ts # Server entry point
├── package.json
├── tsconfig.json
└── README.md
The template includes example widgets that work with both MCP Apps and ChatGPT
out of the box using type: "mcpApps".
Step 2: Understanding the Server Setup
Let’s examine the server entry point (index.ts):
import { MCPServer } from "mcp-use/server";
const server = new MCPServer({
name: "my-widget-server",
version: "1.0.0",
description: "MCP server with dual-protocol widget support",
// Required for production: Used for CSP configuration and widget URLs
baseUrl: process.env.MCP_URL || "http://localhost:3000",
});
// Add your tools, resources, and prompts here
// ...
// Start the server
server.listen().then(() => {
console.log("Server running on http://localhost:3000");
});
Key Configuration Options
baseUrl: Required for production. Used to configure Content Security Policy (CSP) for both widget protocols and generate proper widget URLs
version: Server version for client discovery
description: Human-readable server description
name: Unique server identifier
Widgets are React components in the resources/ folder. When using type: "mcpApps", they’re automatically registered to work with both MCP Apps and ChatGPT protocols.
Create resources/user-profile.tsx:
import React from "react";
import { z } from "zod";
import { useWidget, type WidgetMetadata } from "mcp-use/react";
// Define the props schema using Zod
const propSchema = z.object({
name: z.string().describe("User's full name"),
email: z.string().email().describe("User's email address"),
avatar: z.string().url().optional().describe("Avatar image URL"),
role: z.enum(["admin", "user", "guest"]).describe("User role"),
bio: z.string().optional().describe("User biography"),
});
// Export metadata for automatic registration
export const widgetMetadata: WidgetMetadata = {
description: "Display a user profile card with avatar and information",
props: propSchema,
};
type UserProfileProps = z.infer<typeof propSchema>;
const UserProfile: React.FC = () => {
// useWidget hook provides props from Apps SDK
const { props, theme } = useWidget<UserProfileProps>();
const { name, email, avatar, role, bio } = props;
const bgColor = theme === "dark" ? "bg-gray-800" : "bg-white";
const textColor = theme === "dark" ? "text-white" : "text-gray-900";
const borderColor = theme === "dark" ? "border-gray-700" : "border-gray-200";
return (
<div
className={`max-w-md mx-auto ${bgColor} ${textColor} rounded-lg shadow-lg border ${borderColor} p-6`}
>
<div className="flex items-center space-x-4 mb-4">
{avatar ? (
<img
src={avatar}
alt={name}
className="w-16 h-16 rounded-full object-cover"
/>
) : (
<div className="w-16 h-16 rounded-full bg-blue-500 flex items-center justify-center text-white text-2xl font-bold">
{name.charAt(0).toUpperCase()}
</div>
)}
<div className="flex-1">
<h2 className="text-xl font-bold">{name}</h2>
<p className="text-sm opacity-75">{email}</p>
</div>
<span
className={`px-3 py-1 rounded-full text-xs font-semibold ${
role === "admin"
? "bg-red-500 text-white"
: role === "user"
? "bg-blue-500 text-white"
: "bg-gray-500 text-white"
}`}
>
{role}
</span>
</div>
{bio && (
<div className="mt-4 pt-4 border-t border-gray-300">
<p className="text-sm">{bio}</p>
</div>
)}
</div>
);
};
export default UserProfile;
Important: Handle Widget Loading StateThe example above doesn’t handle the loading state. In production, widgets render before the tool execution completes. On first render, props will be empty {} and isPending will be true. Always check isPending to avoid accessing undefined properties:const { props, theme, isPending } = useWidget<UserProfileProps>();
if (isPending) {
return <div className="animate-pulse">Loading profile...</div>;
}
const { name, email, avatar, role, bio } = props;
// Now safe to access props
See Widget Lifecycle for complete patterns.
How Automatic Registration Works
When you call server.listen(), the framework:
- Scans the
resources/ directory for .tsx files
- Extracts
widgetMetadata from each component
- Registers a tool with the filename as the name (e.g.,
user-profile)
- Creates dual-protocol metadata automatically:
- MCP Apps:
text/html;profile=mcp-app with _meta.ui.* fields
- ChatGPT:
text/html+skybridge with _meta.openai/* fields
- Registers a resource at
ui://widget/user-profile.html
- Builds the widget with dual-protocol support
No manual registration needed! The same widget works in both ChatGPT and MCP Apps clients.
Protocol Detection: Your widget code doesn’t need to know which protocol
is being used. The useWidget() hook automatically detects the environment
and provides a unified API.
You can mix automatic widgets with traditional tools:
// Fetch user data from an API
server.tool(
{
name: "get-user-data",
description: "Fetch user information from the database",
schema: z.object({ userId: z.string().describe("The user ID to fetch") }),
},
async ({ userId }) => {
// Simulate API call
const userData = {
name: "John Doe",
email: "john@example.com",
avatar: "https://api.example.com/avatars/john.jpg",
role: "user",
bio: "Software developer passionate about AI",
};
return text(`User data retrieved for ${userId}`);
},
);
// Display user profile using the widget
// The LLM can now call 'user-profile' tool with the data
For production widgets, you may want to customize Apps SDK metadata. You can do this manually:
server.uiResource({
type: "appsSdk",
name: "custom-widget",
title: "Custom Widget",
description: "A custom widget with specific configuration",
htmlTemplate: `<!DOCTYPE html>...`, // Your HTML
appsSdkMetadata: {
"openai/widgetDescription": "Interactive data visualization",
// "openai/widgetDomain" defaults to "https://chatgpt.com" - override if needed
"openai/widgetCSP": {
connect_domains: ["https://api.example.com"],
resource_domains: ["https://cdn.example.com"],
},
"openai/toolInvocation/invoking": "Loading widget...",
"openai/toolInvocation/invoked": "Widget ready",
"openai/widgetAccessible": true,
"openai/resultCanProduceWidget": true,
},
});
However, with automatic registration, metadata is generated automatically based on your widgetMetadata, including the default "openai/widgetDomain": "https://chatgpt.com" which is required for app submission.
ChatGPT-Only vs Dual-Protocol: The example above uses type: "appsSdk" which only works with ChatGPT. For maximum compatibility with both ChatGPT and MCP Apps clients, use type: "mcpApps" with the metadata field instead:server.uiResource({
type: "mcpApps", // Works with BOTH ChatGPT and MCP Apps clients
name: "custom-widget",
htmlTemplate: `...`,
metadata: {
csp: {
connectDomains: ["https://api.example.com"],
resourceDomains: ["https://cdn.example.com"],
},
prefersBorder: true,
widgetDescription: "Interactive data visualization",
},
});
See MCP Apps for complete dual-protocol documentation.
Step 6: Testing Your Server
Start the Development Server
This starts:
- MCP server on port 3000
- Widget development server with Hot Module Replacement (HMR)
- Inspector UI at
http://localhost:3000/inspector
Test in Inspector
- Open
http://localhost:3000/inspector
- Navigate to the Tools tab
- Find your
user-profile tool
- Enter test parameters:
{
"name": "Jane Smith",
"email": "jane@example.com",
"role": "admin",
"bio": "Product manager and design enthusiast"
}
- Click Execute to see the widget render
Test in ChatGPT
- Configure your MCP server in ChatGPT settings
- Ask ChatGPT: “Show me a user profile for Jane Smith, email jane@example.com, role admin”
- ChatGPT will call the
user-profile tool and display the widget
Widgets can access the output of their own tool execution:
const MyWidget: React.FC = () => {
const { props, output } = useWidget<MyProps, MyOutput>();
// props = tool input parameters
// output = additional data returned by the tool
return <div>{/* Use both props and output */}</div>;
};
Widgets can call other MCP tools:
const MyWidget: React.FC = () => {
const { callTool } = useWidget();
const handleAction = async () => {
const result = await callTool("get-user-data", {
userId: "123",
});
console.log(result);
};
return <button onClick={handleAction}>Fetch Data</button>;
};
Persistent State
Widgets can maintain state across interactions:
const MyWidget: React.FC = () => {
const { state, setState } = useWidget();
const savePreference = async () => {
await setState({ theme: "dark", language: "en" });
};
return <div>{/* Use state */}</div>;
};
Step 8: Production Configuration
Environment Variables
Create a .env file:
PORT=3000
MCP_URL=https://your-server.com
NODE_ENV=production
Build for Production
The build process:
- Compiles TypeScript
- Bundles React widgets for Apps SDK
- Optimizes assets
- Generates production-ready HTML templates
Content Security Policy
When baseUrl is set, CSP is automatically configured:
const server = new MCPServer({
name: "my-server",
version: "1.0.0",
baseUrl: process.env.MCP_URL, // Required for production
});
This ensures:
- Widget URLs use the correct domain
- CSP includes your server domain
- Works behind proxies and custom domains
Step 9: Deployment
Deploy to mcp-use Cloud
The easiest deployment option:
# One command deployment
npx @mcp-use/cli deploy
See the Deployment Guide for details.
Manual Deployment
- Build your server:
npm run build
- Set environment variables
- Deploy to your hosting platform (Railway, Render, etc.)
- Update
MCP_URL to your production domain
Best Practices
1. Schema Design
Use descriptive Zod schemas to help LLMs understand your widgets:
// ✅ Good: Clear descriptions
const propSchema = z.object({
city: z.string().describe("The city name (e.g., 'New York', 'Tokyo')"),
temperature: z.number().min(-50).max(60).describe("Temperature in Celsius"),
});
// ❌ Bad: No descriptions
const propSchema = z.object({
city: z.string(),
temp: z.number(),
});
2. Theme Support
Always support both light and dark themes:
const { theme } = useWidget();
const bgColor = theme === "dark" ? "bg-gray-900" : "bg-white";
const textColor = theme === "dark" ? "text-white" : "text-gray-900";
3. Loading States and Error Handling
Always handle the loading state first, then check for missing or invalid data:
const MyWidget: React.FC = () => {
const { props, isPending } = useWidget<MyProps>();
// First, handle loading state
if (isPending) {
return <div className="animate-pulse">Loading...</div>;
}
// Then, validate required data
if (!props.requiredField) {
return <div>Required data missing</div>;
}
return <div>{/* Render widget */}</div>;
};
Keep widgets focused on a single purpose:
import type { WidgetMetadata } from "mcp-use/react";
// ✅ Good: Single purpose
export const widgetMetadata: WidgetMetadata = {
description: "Display weather for a city",
props: z.object({ city: z.string() }),
};
// ❌ Bad: Too many responsibilities
export const widgetMetadata: WidgetMetadata = {
description: "Display weather, forecast, map, and news",
props: z.object({
/* too many fields */
}),
};
Troubleshooting
Problem: Widget file exists but tool doesn’t appear
Solutions:
- Ensure file has
.tsx extension
- Export
widgetMetadata object
- Export default React component
- Check server logs for errors
Props Not Received
Problem: Component receives empty props
Solutions:
- Check
isPending first: Widgets render before tool execution completes. Props are empty {} when isPending is true
- Use
useWidget() hook (not React props)
- Ensure
widgetMetadata.props is a valid Zod schema
- Verify tool parameters match schema
- Check Apps SDK is injecting
window.openai.toolInput
// Always check isPending
const { props, isPending } = useWidget<MyProps>();
if (isPending) return <div>Loading...</div>;
// Now props are available
CSP Errors
Problem: Widget loads but assets fail with CSP errors
Solutions:
- Set
baseUrl in server config
- Add external domains to CSP whitelist
- Use HTTPS for all resources
appsSdkMetadata: {
"openai/widgetCSP": {
connect_domains: ["https://api.example.com"],
resource_domains: ["https://cdn.example.com"],
},
}
Next Steps
Example: Complete Server
Here’s a complete example combining everything:
import { MCPServer, mix, text, object } from "mcp-use/server";
import { z } from "zod";
const server = new MCPServer({
name: "weather-app",
version: "1.0.0",
description: "Weather app with interactive widgets",
baseUrl: process.env.MCP_URL || "http://localhost:3000",
});
// Traditional tool to fetch weather data
server.tool(
{
name: "fetch-weather",
description: "Fetch current weather for a city",
schema: z.object({
city: z.string().describe("The city to fetch weather for"),
}),
},
async ({ city }) => {
// Simulate API call
const weather = {
city,
temperature: 22,
condition: "sunny",
humidity: 65,
};
return mix(
text(
`Weather for ${city}: ${weather.condition}, ${weather.temperature}°C`,
),
object(weather),
);
},
);
// Widgets in resources/ folder are automatically registered
// - resources/display-weather.tsx
// - resources/weather-forecast.tsx
server.listen().then(() => {
console.log("Weather app server running!");
});
Summary
You’ve learned how to build MCP servers with dual-protocol widget support:
- ✅ Create an MCP server with dual-protocol widget support
- ✅ Use automatic widget registration with
type: "mcpApps"
- ✅ Build React widgets that work in both MCP Apps and ChatGPT
- ✅ Use the
useWidget() hook for protocol-agnostic widget code
- ✅ Configure widget metadata for both protocols
- ✅ Test and deploy your server
Your MCP server is now ready to provide rich interactive experiences in both MCP Apps clients and ChatGPT!